Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.

Identifieur interne : 001225 ( Main/Exploration ); précédent : 001224; suivant : 001226

Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.

Auteurs : Vera Cherkasova [États-Unis] ; Luis Lopez Maury ; Dagmar Bacikova ; Kevin Pridham ; Jürg B Hler ; Richard J. Maraia

Source :

RBID : pubmed:22160596

Descripteurs français

English descriptors

Abstract

Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.

DOI: 10.1091/mbc.E11-08-0732
PubMed: 22160596
PubMed Central: PMC3268726


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.</title>
<author>
<name sortKey="Cherkasova, Vera" sort="Cherkasova, Vera" uniqKey="Cherkasova V" first="Vera" last="Cherkasova">Vera Cherkasova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maury, Luis Lopez" sort="Maury, Luis Lopez" uniqKey="Maury L" first="Luis Lopez" last="Maury">Luis Lopez Maury</name>
</author>
<author>
<name sortKey="Bacikova, Dagmar" sort="Bacikova, Dagmar" uniqKey="Bacikova D" first="Dagmar" last="Bacikova">Dagmar Bacikova</name>
</author>
<author>
<name sortKey="Pridham, Kevin" sort="Pridham, Kevin" uniqKey="Pridham K" first="Kevin" last="Pridham">Kevin Pridham</name>
</author>
<author>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
</author>
<author>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22160596</idno>
<idno type="pmid">22160596</idno>
<idno type="doi">10.1091/mbc.E11-08-0732</idno>
<idno type="pmc">PMC3268726</idno>
<idno type="wicri:Area/Main/Corpus">001218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001218</idno>
<idno type="wicri:Area/Main/Curation">001218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001218</idno>
<idno type="wicri:Area/Main/Exploration">001218</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.</title>
<author>
<name sortKey="Cherkasova, Vera" sort="Cherkasova, Vera" uniqKey="Cherkasova V" first="Vera" last="Cherkasova">Vera Cherkasova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maury, Luis Lopez" sort="Maury, Luis Lopez" uniqKey="Maury L" first="Luis Lopez" last="Maury">Luis Lopez Maury</name>
</author>
<author>
<name sortKey="Bacikova, Dagmar" sort="Bacikova, Dagmar" uniqKey="Bacikova D" first="Dagmar" last="Bacikova">Dagmar Bacikova</name>
</author>
<author>
<name sortKey="Pridham, Kevin" sort="Pridham, Kevin" uniqKey="Pridham K" first="Kevin" last="Pridham">Kevin Pridham</name>
</author>
<author>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
</author>
<author>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activating Transcription Factor 1 (genetics)</term>
<term>Activating Transcription Factor 1 (metabolism)</term>
<term>Activating Transcription Factors (genetics)</term>
<term>Activating Transcription Factors (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Nuclear Pore Complex Proteins (genetics)</term>
<term>Nuclear Pore Complex Proteins (metabolism)</term>
<term>RNA, Fungal (analysis)</term>
<term>RNA, Fungal (metabolism)</term>
<term>RNA, Messenger (analysis)</term>
<term>RNA, Transfer (metabolism)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert (métabolisme)</term>
<term>ARN fongique (analyse)</term>
<term>ARN fongique (métabolisme)</term>
<term>ARN messager (analyse)</term>
<term>Complexe protéique du pore nucléaire (génétique)</term>
<term>Complexe protéique du pore nucléaire (métabolisme)</term>
<term>Facteur de transcription ATF-1 (génétique)</term>
<term>Facteur de transcription ATF-1 (métabolisme)</term>
<term>Facteurs de transcription ATF (génétique)</term>
<term>Facteurs de transcription ATF (métabolisme)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Fungal</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Activating Transcription Factor 1</term>
<term>Activating Transcription Factors</term>
<term>Nuclear Pore Complex Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Activating Transcription Factor 1</term>
<term>Activating Transcription Factors</term>
<term>Nuclear Pore Complex Proteins</term>
<term>RNA, Fungal</term>
<term>RNA, Transfer</term>
<term>RNA-Binding Proteins</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN fongique</term>
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe protéique du pore nucléaire</term>
<term>Facteur de transcription ATF-1</term>
<term>Facteurs de transcription ATF</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Protéines de liaison à l'ARN</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN fongique</term>
<term>Complexe protéique du pore nucléaire</term>
<term>Facteur de transcription ATF-1</term>
<term>Facteurs de transcription ATF</term>
<term>Noyau de la cellule</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Protéines de liaison à l'ARN</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22160596</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.</ArticleTitle>
<Pagination>
<MedlinePgn>480-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E11-08-0732</ELocationID>
<Abstract>
<AbstractText>Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cherkasova</LastName>
<ForeName>Vera</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maury</LastName>
<ForeName>Luis Lopez</ForeName>
<Initials>LL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bacikova</LastName>
<ForeName>Dagmar</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pridham</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bähler</LastName>
<ForeName>Jürg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maraia</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051697">Activating Transcription Factor 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051696">Activating Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028861">Nuclear Pore Complex Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C097701">Pcr1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C543934">Xpot protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C513614">sla1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051697" MajorTopicYN="N">Activating Transcription Factor 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051696" MajorTopicYN="N">Activating Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028861" MajorTopicYN="N">Nuclear Pore Complex Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22160596</ArticleId>
<ArticleId IdType="pii">mbc.E11-08-0732</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E11-08-0732</ArticleId>
<ArticleId IdType="pmc">PMC3268726</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Cell Biol. 2008 Mar;18(3):98-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 May;7(5):826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Jun;14(6):1214-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2009 Jan 8;28(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(1):298-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19042972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Feb 15;8(4):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Apr;16(4):430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19287396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 3;461(7260):60-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19680239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Oncol. 2009 Dec;36 Suppl 3:S3-S17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19963098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jan 21;584(2):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 May-Jun;1799(5-6):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 May 28;38(4):487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2010;3(128):ra49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20587805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Sep 1;24(17):1832-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Agents Med Chem. 2010 Sep;10(7):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Nov 26;404(2):183-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20875427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Dec;186(4):1207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jun;39(11):4728-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleus. 2010 May-Jun;1(3):224-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 11;286(45):39478-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21940626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2011 May-Jun;2(3):362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 15;17(24):7430-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9857198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 15;17(24):7442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9857199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Apr;5(4):539-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10199570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4167-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Apr;20(7):2505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2000 Apr;129(2-3):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Aug;6(2):339-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10983981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Apr;183(7):2331-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 May 14;153(4):F13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2002;71:375-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 May;9(5):1113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Aug;22(16):5708-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2003 Feb;3(2):145-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Aug;14(8):3266-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 12;278(37):35145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 19;278(38):36924-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12851403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Nov;12(5):1301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Dec 15;22(24):6562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Apr 19;23(18):3151-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Apr 21;23(8):1792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Apr 30;117(3):311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2003 Jul 10;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12854975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 25;304(5679):1971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Aug;24(15):6861-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">341150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Mar 13;284(5752):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6987526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1980 Mar;19(3):741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7363329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Mar;7(3):1208-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 May;84(10):3316-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3554236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Apr 14;332(6165):649-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3128739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 May 20;53(4):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Nov 4;55(3):395-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3141060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1989 Jan 30;978(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2492433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Sep;6(9):1799-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1516834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Jun 25;21(12):2955-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Jul 15;8(14):1693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7958849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Dec;14(12):7920-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Jul 11;23(13):2531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 15;14(24):6193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 1;271(9):4679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Dec 1;24(23):4676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8972853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 1996 Apr;1(4):391-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9135083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 2;89(3):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Aug;146(4):1221-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9258669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13765-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1997 Dec;3(12):1434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9404894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Nov;18(11):6374-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Nov;9(11):3041-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9802895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 1;12(23):3650-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2082-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Jul;35(6):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2005 May;22(7):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15942936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:407-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jan 6;21(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Feb;26(4):1445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16449655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2006 Jan-Feb;41(1):3-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Feb 3;21(3):319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Apr;12(4):644-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Jul;13(7):611-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16799560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):28460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 23;282(8):5160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Mar;12(3):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 May;27(9):3303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 30;131(5):838-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 30;131(5):915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2003 Nov;Chapter 13:Unit 13.15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265319</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
<name sortKey="Bacikova, Dagmar" sort="Bacikova, Dagmar" uniqKey="Bacikova D" first="Dagmar" last="Bacikova">Dagmar Bacikova</name>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
<name sortKey="Maury, Luis Lopez" sort="Maury, Luis Lopez" uniqKey="Maury L" first="Luis Lopez" last="Maury">Luis Lopez Maury</name>
<name sortKey="Pridham, Kevin" sort="Pridham, Kevin" uniqKey="Pridham K" first="Kevin" last="Pridham">Kevin Pridham</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Cherkasova, Vera" sort="Cherkasova, Vera" uniqKey="Cherkasova V" first="Vera" last="Cherkasova">Vera Cherkasova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22160596
   |texte=   Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22160596" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020